

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Structure Elucidation of Two Acetylated Derivatives of Oligomycin A

László Szilágyi^a; János Samu^b; Ilona Harsányi^c

^a Chair of Organic Chemistry, L. Kossuth University, Debrecen ^b L. Eötvös University, ^c Reanal Co., Budapest, epes, Hungary

To cite this Article Szilágyi, László , Samu, János and Harsányi, Ilona(1995) 'Structure Elucidation of Two Acetylated Derivatives of Oligomycin A', *Spectroscopy Letters*, 28: 5, 699 – 707

To link to this Article: DOI: 10.1080/00387019508009912

URL: <http://dx.doi.org/10.1080/00387019508009912>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**STRUCTURE ELUCIDATION OF TWO ACETYLATED DERIVATIVES
OF OLIGOMYCIN A**

Keywords: 2D NMR, ^1H , ^{13}C , assignments, macrolide, biological testing.

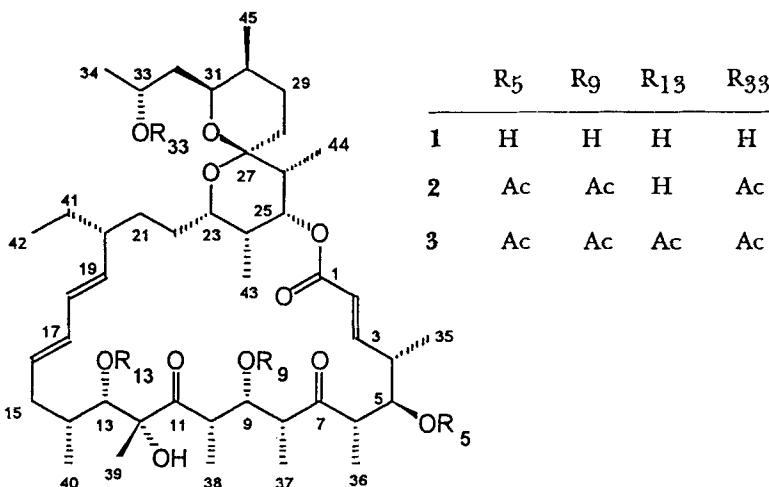
László Szilágyi^{1*}, János Samu² and Ilona Harsányi³

Chair of Organic Chemistry, L. Kossuth University¹, H-4010. Debrecen,
P.O.B.20.; L. Eötvös University², H-1518 Budapest 112 P.O.B.32;
Reanal Co.³, H-1147 Budapest, Telepes u. 53, Hungary

ABSTRACT

Partial acetylation of oligomycin A (**1**) resulted in the formation of 5,9,33-tri-O-acetyl (**2**) and 5,9,13,33-tetraacetyl (**3**) derivatives whose structures have been established through complete assignments of their ^1H and ^{13}C NMR spectra. These derivatives were devoid of inhibitory activity when tested on *Aspergillus niger* spores.

* Author for correspondence.


INTRODUCTION

The oligomycin/rutamycin/cytovaricin family of macrolide antibiotics has been of considerable value in studies of oxidative phosphorylation as these compounds are specific inhibitors of mitochondrial ATPase^{1,2}. The structures of oligomycin A, -C and -B have been determined by chemical degradation³ and X-ray crystallography⁴, respectively. Chemical modification of substrates or inhibitors is one of the most powerful approaches to map enzyme binding sites and to get insight into structural requirements for substrate or inhibitor binding. Acetylated derivatives of macrolide antibiotics like oleandomycin and erythromycin were found to show *in vivo* biological activity; this was partly attributed to increased hydrophobicity favoring induction and formation of cytochrome P450 metabolic complexes⁵. We have chosen to synthesize acetylated derivatives of oligomycin A (1) for biological testing.

RESULTS AND DISCUSSION

Assignments

The structures of 2 and 3 have been determined by NMR spectroscopy. Unassigned ¹³C chemical shifts were published³ for the parent compound 1 in CDCl₃ while complete ¹H- and ¹³C assignments were achieved⁶ for a solution in methanol. In the present case CDCl₃ proved to be more useful as a solvent for comparative NMR studies mainly because of the lack of disturbing residual signals and a slightly better dispersion of the 11 methyl resonances in the ¹H NMR spectrum. Since both ¹H- and ¹³C chemical shifts are solvent dependent it was necessary to reassign the NMR spectra in CDCl₃ solution. This was accomplished by concerted use of 2D methods such as DQ-filtered pure phase H,H-COSY⁷, H,H-RELAY⁸ and H,C-COSY⁹. These methods, supplemented with ¹³C-HSQC¹⁰ were also instrumental in obtaining essentially complete ¹H and

^{13}C assignments for the acetylated derivatives **2** and **3** (Table 1). Regular (1D) ^{13}C NMR spectra indicated the presence of three and four acetyl carbonyl resonances for **2** and **3** respectively. The corresponding methyl signals are partially overlapped by other C-methyl resonances which could, however, be readily distinguished in the H_2C -COSY maps. The positions of the acetyl groups could then be established on the basis of the characteristic downfield shifts of αH resonances upon acetylation of the respective OH-groups. Comparison of ^1H chemical shifts of **3** with those in the parent compound **1** reveals downfield shifts of 1.40, 1.60, 1.02 and 0.95 ppm for H-5, H-9, H-13 and H-33, respectively. Respective values for **2** are: 1.30, 1.48, -0.08 and 0.87 ppm (Table 1). It follows therefore that **2** is 5,9,33-tri-O-acetyl-oligomycin A whereas **3** has the single free OH-group in position 12 *i.e.*, it is 5,9,13,33-tetra-O-acetyl-oligomycin A. A "diacetate" of oligomycin A has been described¹¹ in 1958. Correct determination of the molecular masses of oligomycins later then established¹² this compound to be a tetraacetyl derivative. An analytical sample of oligomycin A

TABLE 1
¹H- and ¹³C chemical shifts^a of 1,2, and 3

Position	1		2		3	
	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}
1	165.14	-	165.37	-	166.24	-
2	122.76	5.82	123.08	5.80	123.19	5.91
3	148.42	6.64	147.93	6.84	149.06	6.90
4	40.18	2.39	40.68	2.46	39.63	2.63
5	73.03	3.76	73.22	5.07	73.35	5.17
6	46.54	2.72	43.32	2.84	43.64	2.98
7	220.01	-	210.87	-	211.16	-
8	45.75	2.76	45.78	2.61	46.16	2.90
9	72.69	3.97	72.59	5.45	71.35	5.57
10	41.99	3.63	40.06	3.75	42.54	3.66
11	220.29	-	219.02	-	215.09	-
12	83.05	-	83.10	-	83.08	-
13	72.29	3.9	72.93	3.85	78.42	5.05
14	33.54	~1.9	33.56	1.86	33.55	2.03
15	38.47	~1.98;2.18	38.57	~1.90;2.17	39.07	2.00
16	129.40	5.45	129.27	5.43	129.63	5.52
17	132.45	6.02	132.51	5.98	133.39	6.10
18	130.32	5.92	130.34	5.89	130.85	5.97

Table 1. (Cont.)

	1		2		3	
Position	δ_C	δ_H	δ_C	δ_H	δ_C	δ_H
19	137.82	5.24	137.78	5.22	137.82	5.36
20	46.07	~1.85	45.18	1.80	45.34	1.84
21	31.50		31.60		30.62*	
22	31.01	1.04;1.61	30.46	~1.0;1.50	30.23*	
23	69.09	3.80	69.17	3.61	68.23	3.75
24	35.88	2.13	35.66	2.07	35.19	1.93
25	76.23	4.94	76.08	4.91	75.96	5.09
26	37.75	1.80	37.67	1.72	37.99	1.71
27	99.25	-	99.35	-	99.22	-
28	26.02	1.25;1.91	26.43*		26.39*	
29	26.54	1.40;2.12	28.23*		26.87*	
30	30.53	~1.57	30.05	1.51	29.68	1.55
31	67.29	3.99	69.17	3.70	68.12	3.75
32	42.62	1.31;1.61	39.77	1.55	39.42	1.53;1.62
33	64.73	4.02	68.08	4.89	68.91	4.97
34	24.81	1.23	21.08	1.20	20.86	1.2
35	17.97	1.18	17.31	0.94	16.70	0.97
36	9.29	1.07	10.18	0.98	9.91	0.99*
37	8.33	1.03	9.00	0.95	9.91	0.95*

(continued)

Table 1. (Cont.)

	1		2		3	
Position	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}
38	14.13	1.10	14.24	0.92	12.57	0.89
39	21.04	1.13	21.47	1.08	22.50	1.27
40	14.52	0.99	14.52	0.93	15.72	0.88
41	28.56	1.30;1.37	29.68	1.22;1.33	28.39	1.18;1.34
42	12.11	0.81	12.11	0.77	11.76	0.74
43	6.11	0.83	5.81	0.79	5.86	0.81
44	11.81	0.97	11.84	0.90	11.76	0.84
45	11.26	0.90	10.99	0.85	10.87	0.84
C=O(Ac)	-		170.72		170.73	
			170.31 (2x)		170.65	
					170.43	
					169.60	
CH ₃ (Ac)			21.08		21.39	
			20.93		20.79	
			20.74		20.61	

^a Measured for solutions in CDCl₃ at 50 (**1**) and 100 MHz (**2** and **3**) for ¹³C and 400 MHz for ¹H. δ -values are referenced to the solvent signal at 77.00 ppm for ¹³C and to tetramethylsilane for ¹H. * Interchangeable assignments.

"diacetate" was prepared by the method of Masamune et al.¹¹. The ¹H- and ¹³C NMR spectra of this product were identical with those of **3**.

EXPERIMENTAL

1 (33 mg, 4.2 mmol) was acetylated in a mixture of pyridine and acetic anhydride (1 ml, 1:1) at 40 °C. After 5 hr, t.l.c. monitoring (Kieselgel 60, cyclohexane-ethyl acetate 1:1 v/v) of the reaction indicated formation of two new products **2** and **3**, in approximately equal amounts. Prolonging the reaction time to 8 hr resulted in the formation of **3** exclusively. The reaction was quenched after 5 hr by pouring the mixture into a large excess of ice-water and extracted with CHCl₃ twice. The organic phase was washed with water, dried over MgSO₄ and evaporated. The crude product was purified by column chromatography on silica gel (Kieselgel 60, 0.9x50 cm), using cyclohexane - ethyl acetate 2:1 (v/v) as eluent, to yield **2** (16 mg, 44%), and **3** (13 mg, 33%). **2** was a syrup with $[\alpha]_D^{25}$ -58.4 (c=0.8, ethanol) while **3** had m.p. 98-99 °C (crystallized from cyclohexane-pentane), and $[\alpha]_D^{25}$ -79.0 (c=0.7, ethanol), lit.¹¹ m.p. 112-113 °C, lit.¹¹ $[\alpha]_D^{24}$ -86.1 (c=1.74, ethanol).

For biological testing 0.5 ml of a spore suspension of *Aspergillus niger* (10^9 spores/ml) was added at 45 °C to 100 ml of a sterile culture medium containing yeast extract (0.1 g) beef meat extract (0.1 g), tripton (0.2 g), Fe^{II}SO₄ (0.3 mg), glucose (1 g) and agar (1.5 g). The test substances **1**, **2** and **3** were developed on a chromatographic plate (Kieselgel 60), dried, poured upon with the medium above and incubated at 37 °C for 24 hr. **2** and **3**, in contrast to **1**, did not show any inhibition zone on treatment with p-iodonitrotetrazolium violet (10 mg in 20 ml ethanol-water 1:1 v/v).

ACKNOWLEDGEMENTS

Financial support from the Hungarian National Science Fund (grant no. OTKA T 014055 to L. Sz.) is gratefully acknowledged. We are indebted to Péter Forgó, Chinoin Rt., Budapest, for recording some of the NMR spectra.

REFERENCES

1. Lardy H. A., Reed P., Lin C.-H. C. Antibiotic inhibitors of mitochondrial ATP synthesis. *Fed. Proc.* 1975; 34: 1707.
2. Tzagoloff A., Meagher P. Assembly of the mitochondrial membrane system VI. Mitochondrial synthesis of subunit proteins of the rutamycin-sensitive adenosine triphosphatase. *J. Biol. Chem.* 1972; 247: 594.
3. Carter G. T. Structure determination of oligomycins A and C. *J. Org. Chem.* 1986; 51: 4264.
4. von Glehn M., Norrestam R., Kierkegaard P., Maron L., Ernster L.: Three-dimensional structure of oligomycin B. *FEBS Lett.* 1972; 20: 267.
5. Delaforge M., Sartori E. In vivo effects of erythromycin, oleandomycin and erythralosamine derivatives on hepatic cytochrome P-450. *Biochem. Pharmacol.* 1990; 40: 223.
6. Morris G. A., Richards M. S. Concerted use of two-dimensional NMR techniques in the ab initio assignment of complex spectra: complete proton and carbon-13 assignment of oligomycin A. *Magn. Reson. Chem.* 1985; 23: 676.
7. Piantini U., Sørensen O. W., Ernst R. R. Multiple quantum filters for elucidating NMR coupling networks. *J. Am. Chem. Soc.* 1982; 104: 6800.
- Marion D., Wüthrich K. Applications of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of proton-proton spin-spin coupling constants in proteins. *Biochem. Biophys. Res. Commun.* 1983; 113: 967.
8. Eich G., Bodenhausen G., Ernst R. R. Exploring nuclear spin systems by relayed magnetization transfer. *J. Am. Chem. Soc.* 1982; 104: 3731.
- Bax E., Drobny G. Optimization of two-dimensional homonuclear relayed coherence transfer NMR spectroscopy. *J. Magn. Reson.* 1985; 61: 306.

9. Bax A. Broadband homonuclear decoupling in heteronuclear shift correlation NMR spectroscopy. *J. Magn. Reson.* 1983; 53: 517.
10. Bodenhausen G., Ruben D. J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. *Chem. Phys. Lett.* 1980; 69: 185.
Bax A., Ikura M., Kay L. E., Torchia D. A., Tschudin R. Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins. *J. Magn. Reson.* 1990; 87: 488.
11. Norwood T. J., Boyd J., Heritage J. E., Soffe N., Campbell I. D. Comparison of techniques for proton-detected heteronuclear proton-nitrogen-15 spectroscopy. *J. Magn. Reson.* 1990; 87: 488.
12. Masamune S., Sehgal J. M., van Tamelen E. E., Strong F. M., Peterson W. H. Separation and preliminary characterisation of oligomycins A, B and C. *J. Am. Chem. Soc.* 1958; 80: 6092.
12. Prouty W. F., Schnoes H. K., Strong F. M. Molecular weight revision for compounds of the oligomycin complex. *Biochem. Biophys. Res. Commun.* 1969; 34: 511.

Date Received: January 18, 1995
Date Accepted: February 24, 1995